
Introduction to
Infrastructure as Code (IaC)
using and

➔ OpenMetal Baremetal and
Backend Automation and
Deployment system

➔ Monitoring and instrumentation
for end user clouds.

➔ Research & development of new
technologies and platform
improvements

Chris Bermudez

Director, DevOps Engineering
OpenMetal

chrisb@openmetal.io

OpenMetal is an Infrastructure as a
Service (IaaS) provider that
believes in the collective and
fundamental good of open source
in the information technology
world.

Our Mission: Make highly complex
open source systems available
on-demand to increase
accessibility for smaller teams.

INFRASTRUCTURE DONOR

https://grafana.opendev.org/d/53e8120f2a/nodepool-inmotion?orgId=1

Agenda

Brief Introduction to IaC, Terraform, and OpenStack

● Quick overview of the importance of IaC
● Quick overview of Terraform and its advantages
● Quick overview of OpenStack and its role in cloud computing

Basic Terraform Usage

● Introduction to Terraform Configuration Files
● Applying Terraform Configuration
● Exercise 1: Students write and apply a basic Terraform

configuration to create an OpenStack resource

Agenda (cont)

Terraform with OpenStack

● Brief explanation and demonstration of configuring the
Terraform OpenStack provider

● Managing OpenStack Resources with Terraform
● Exercise 2: Students write and apply a Terraform configuration

to set up a basic OpenStack architecture

Wrap Up and Q&A

● Key Takeaways and Best Practices
● Q&A Session

The Importance of
Infrastructure as

Code (IaC)

➔ Overall Automation and Efficiency
➔ Consistency and Standardization
➔ Version Control and Collaboration
➔ Rapid Scalability
➔ Cost Savings
➔ Disaster Recovery

IaC is a fundamental practice for teams that aim
to improve efficiency, consistency, and
scalability in their infrastructure management
processes.

➔ Helps reduce the potential for human error
➔ Enhances collaboration
➔ Can ultimately contribute to the delivery of

higher quality software, faster

The Importance of
Infrastructure as Code (IaC)

Terraform and its
advantages

➔ Platform Agnostic
➔ Declarative Language
➔ Modular and Reusable Code
➔ Resource Relationships
➔ Change Automation and Management
➔ State Management
➔ Immutable Infrastructure

Terraform's multi-platform support, declarative
nature, and robust change management
capabilities make it a powerful tool for managing
complex infrastructures.

Terraform and its advantages

OpenStack and its role
in cloud computing

➔ Offers complete control and
customization

➔ Provides a wide range of services
➔ Infrastructure Management
➔ Scalability and Efficiency
➔ Multi-tenancy
➔ Large Community and Ecosystem
➔ Can make Private and Hybrid Clouds

Basic Terraform Usage

Providers, Resources, and Data Sources

Providers are responsible for
managing resources of a
specific cloud or service.

Resources represent the
infrastructure objects you want
to manage, such as virtual
machines, networks, or storage
volumes. Each resource block
defines a specific resource type
and its properties.

Data sources provide
information from external
sources, such as querying
existing resources in your cloud
environment. You can use data
sources to retrieve details about
existing networks, images, or
flavors.

Variables and Outputs

Variables are a convenient way to customize
Terraform configurations. For example, you could
define the image name as a variable, then reuse it
across resources and modules

Outputs are a way to tell Terraform what data
to return at the end of apply. You could use it to
print an IP address, a URL, or any other
information about the resources

Applying Terraform Configuration

● terraform init - This command is used to initialize a working directory
containing Terraform configuration files. This is the first command that
should be run after writing a new Terraform configuration. It downloads the
necessary provider plugins

● terraform plan - This command creates an execution plan. It is used to
see what changes Terraform will make to your infrastructure before actually
making those changes.

● terraform apply This command applies the desired changes to reach
the desired state of the configuration, or the predetermined set of actions
generated by a terraform plan execution plan.

● terraform destroy - This command is used to destroy the
Terraform-managed infrastructure. It's the opposite of terraform apply,
it terminates all the resources specified in the configuration.

Exercise 1
Lets write a basic Terraform

configuration to create an

OpenStack network resource

Using Terraform with OpenStack

Terraform OpenStack Provider

To interact with OpenStack, Terraform

uses a configured provider to make API

requests on your behalf. Before you can

use the provider, you must configure it

with the proper credentials.

Terraform OpenStack Provider (cont.)

For security reasons, it's recommended not to
hardcode your credentials into your Terraform files.
A best practice is to load them from environment
variables like the ones provided by the OpenStack
RC

Then, your provider configuration would simply
look like this:

Managing OpenStack Resources - Instances
Let's start by defining a provider and creating an instance.
openstack_compute_instance_v2 resource type is used to create an instance.

Managing OpenStack Resources - Network
openstack_networking_network_v2 resource type is used to create a network and
openstack_networking_subnet_v2 can be used to create a subnet on it.

Managing OpenStack Resources - Floating IPs
You can use openstack_networking_floatingip_v2 to create a floating IP.
To assign it, use openstack_compute_floatingip_associate_v2

Exercise 2

Let's put everything together

and write a Terraform

configuration to set up a basic

OpenStack architecture.

This will comprise of a Network

with Subnet, Instance, and

Floating IP.

➔ Terraform Recommended Practices
➔ Terraform Registry - OpenStack Provider
➔ Terraform Standard Module Structure
➔ Running Terraform in Automation
➔ Terraform Backends
➔ Workshop GitHub Repository

Further Education/Best Practices

https://developer.hashicorp.com/terraform/cloud-docs/recommended-practices
https://registry.terraform.io/providers/terraform-provider-openstack/openstack/latest/docs
https://developer.hashicorp.com/terraform/language/modules/develop/structure
https://developer.hashicorp.com/terraform/tutorials/automation/automate-terraform
https://developer.hashicorp.com/terraform/language/settings/backends/configuration
https://github.com/openmetalio/open-infra-2023-iac-class

Thank you!

Q/A

