
vGPUs with OpenStack

➔ OMI OpenStack Private Cloud
configuration and deployment
system

➔ Monitoring and instrumentation
for hardware & deployment
systems

➔ Research & development of new
technologies and platform
improvements

Jacob Hipps

Principal Engineer
OpenMetal

jacobh@openmetal.io
@yellowcrescent

OpenMetal is an Infrastructure as a
Service Company (IaaS) that
believes in the collective and
fundamental good of open source
in the information technology
world.

Our Mission: Make highly complex
open source systems available
on-demand to increase
accessibility for smaller teams.

INFRASTRUCTURE DONOR

https://grafana.opendev.org/d/53e8120f2a/nodepool-inmotion?orgId=1

➔ vGPUs are virtualized GPUs, shared from one
or more physical GPUs

➔ Use cases (and when not to use)
➔ Hardware setup
➔ Configuring the host node
➔ Spinning up a VM with a vGPU

What & Why

Use Case #1
CI jobs or transient tasks

➔ Spin up a VM with all of your required
tools to run a job; destroy when
completed

➔ Only uses the vGPU resource while the
VM is active

➔ Scheduling vGPUs via Kubernetes
pods/resources

Use Case #2
Rendering or Graphical VMs

➔ Isolated rendering instance with
dedicated GPU resources

➔ Capabilities depend on physical GPU
and licensing
◆ A100 only supports “compute”

workloads (eg. CUDA, OptiX)
◆ RTX-6000+ has RT cores for faster

OptiX raytracing and allows OpenGL,
Vulkan & DirectX display

➔ Virtual desktop/workstation

When NOT to use
vGPUs?

Use PCI passthrough instead

➔ Workloads requiring high amount of
VRAM (such as AI or ML training)

➔ Long-lived VMs or applications that
can handle task delegation on their
own

➔ Video transcoding

Hardware Setup
➔ GPU with vGPU support

◆ NVIDIA A-series, L-series, GRID,
RTX-6000, etc.

➔ Correct BIOS options are critical!
➔ Need to ensure options for SR-IOV and

IOMMU are enabled, along with all of their
dependencies

BIOS Settings (from Supermicro BH12 AMD series)
➔ Virtualization Support (VMX or SVM)
➔ VT-d (Directed I/O) or IOMMU

◆ Required for vfio-pci and vGPU isolation, also
used for PCI passthrough

➔ SR-IOV
◆ Required to create virtual functions for vGPUs

➔ Above 4GB Decoding (64-bit addressing)
◆ Allows PCIe devices to map BAR memory above

4GB
➔ PCIe ARI (Advanced Routing ID

Interpretation)
◆ Required for SR-IOV

➔ PCIe ACS (Access Control Services)
◆ Required to ensure IOMMU groups are created for

SR-IOV VFs
➔ PCIe AER (Advanced Error Recovery)

◆ Required for ACS to function

Configuring the Host
GPU Setup
➔ Ensure IOMMU is enabled in the kernel

◆ intel_iommu=on or amd_iommu=on
➔ Install prereqs

◆ kernel headers; optional: dkms, mdevctl
➔ Install Host GPU driver

◆ Enterprise NVIDIA “Linux KVM” GRID Host driver
◆ Blacklist nouveau if necessary
◆ May need to use –no-drm for golden image builds
◆ Ensure nvidia-vgpud & nvidia-vgpu-mgr services are enabled

in systemd
➔ Reboot!
➔ Enable VFs & Register MDEVs

◆ /usr/lib/nvidia/sriov-manage -e ALL
➔ Check your work

◆ lspci -nn | grep 10de # should show 16+1 entries
◆ mdevctl types

● ls /sys/class/mdev_bus/*/mdev_supported_types
◆ nvidia-smi

Configuring the Host
vGPU Profiles
➔ vGPU Mode: Time-shared versus MIG

◆ MIG only supports Compute; max 7 instances

➔ Possible to mix and match non-MIG profiles, but
may not be efficient

➔ Example A100 profile: A100-3-20C
◆ NVIDIA vGPU Profile Matrix

➔ MIG Instance Type: MIG 3g.20gb
➔ Each GPU model has their own profiles

Enable MIG mode
nvidia-smi -mig 1

List available profiles
nvidia-smi mig -lgip

Create vGPU instances with our profiles
nvidia-smi mig -cgi $PROFILE_ID,...

https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#virtual-gpu-types-grid-reference

Configuring the Host
NOVA
➔ Recommend Yoga or above
➔ After creating your vGPUs in the last step, check to see

their MDEV name [verify]
◆ ls /sys/class/mdev_bus/*/mdev_supported_types

➔ Update nova-compute’s nova.conf

[devices]
enabled_vgpu_types = nvidia-476 # Victoria and below
enabled_mdev_types = nvidia-476 # Wallaby and above

➔ Restart nova-compute
➔ Check Placement to verify that our VGPU resources are

available

openstack allocation candidate list --resource VGPU=1

➔ Bonus: Custom Traits
◆ CUSTOM_NVIDIA_A100_3_20C - Create & set it on the

“local_pci” resource providers, up to the max instances allowed
(2)

◆ Restricts max instances to correct number instead of 16
◆ Allows having flavors for different vGPU types

Creating & assigning optional traits
openstack trait create CUSTOM_NVIDIA_A100_3_20C

openstack resource provider trait set
289b46c2-bba7-4fd7-9f7e-8dc631bc723a --trait
CUSTOM_NVIDIA_A100_3_20C

Provisioning a VM with
a vGPU!
➔ Create a new flavor with resources:VGPU=1

◆ This can be adjusted to assign multiple vGPUs
to a single VM

➔ Or provision a VM with an existing flavor
and set the metadata ad-hoc

➔ Inside the VM
◆ Install the NVIDIA Guest GRID driver
◆ Ensure nvidia-gridd is running for licensing
◆ Must have a license server running

➔ Create the local compute instance &
verify

nvidia-smi mig -cci
nvidia-smi mig -lci

Thank you!

